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1 Introduction

The pure spinor formalism [1] is a manifestly super-Poincaré covariant description of the

superstring which has been successfully used to compute multiloop scattering amplitudes

and covariantly quantize Ramond-Ramond backgrounds. One of the most surprising fea-

tures of this formalism is that the b ghost is not a fundamental worldsheet variable but is a

composite operator. Nevertheless, after replacing the b ghost with this composite operator,

the rules for computing scattering amplitudes are essentially the same as in bosonic string

theory.

In bosonic string theory, it is well-known that when a vertex operator V is in Siegel

gauge, i.e. when b0V = 0, the vertex operator is a conformal primary field. Since the

scattering amplitude prescription simplifies when the vertex operators are primary, Siegel

gauge is a convenient gauge choice. Furthermore, Siegel gauge is a useful gauge choice in
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bosonic open string field theory since it reduces the kinetic term 〈ΦQΦ〉 to 〈Φc0L0Φ〉 so

that the propagator is simply b0
L0

.

Because the composite operator for the b ghost depends on the non-minimal variables in

the pure spinor formalism, it is not immediately obvious how to construct BRST-invariant

vertex operators V satisfying the Siegel gauge condition b0V = 0. For example, the massless

open string vertex operator in “minimal” gauge is V = λαAα(x, θ), which does not satisfy

b0V = 0 for any choice of Aα. Note that V = λαAα(x, θ) is a conformal primary whenever

�Aα = 0 (which implies Lorentz gauge for the gluon). So the condition b0V = 0 in the

pure spinor formalism implies more than just the condition that V is primary.

As will be shown here, a natural way to construct vertex operators in Siegel gauge is

to start with the vertex operator V ∗ for the antifield which has ghost-number two. One

then flips the statistics of the antifield by defining V ∗ to be a bosonic operator. Finally,

one constructs the unintegrated ghost-number one vertex operator VS in Siegel gauge as

VS = b0V
∗. The corresponding integrated ghost-number zero vertex operator in Siegel

gauge is
∫
dz b−1b0V

∗.

This construction in bosonic string theory obviously reproduces the usual Siegel gauge

vertex operators where V ∗ = c0VS . But in the pure spinor formalism where there is no c

ghost, this construction of Siegel gauge vertex operators is less trivial. For example, since

the composite operator for b depends on the non-minimal variables, the resulting Siegel

gauge vertex operator VS will also depend on the non-minimal variables.

The simplest example is the Siegel gauge massless vertex operator which is constructed

from the ghost-number two operator V ∗ = λαλβAαβ(x, θ) where Aαβ(x, θ) is a bispinor su-

perfield. As shown in [2], QV ∗ = 0 and δV ∗ = Q(λαΩα) implies that the component fields

in Aαβ(x, θ) describe the antifields to the super-Yang-Mills gluon and gluino. The corre-

sponding Siegel gauge vertex operator for the super-Yang-Mills multiplet is constructed in

unintegrated form as b0V
∗, and in integrated form as

∫
dz b−1b0V

∗.

Since the composite operator for the b ghost contains poles when the pure spinor

variable satisfies λα = 0, the vertex operator in Siegel gauge will also contain these poles.

As explained in [3], these poles cause the functional integration over λα to diverge if the

order of the poles is greater than or equal to 11. However, whenever this divergence occurs,

the functional integral over the fermionic non-minimal variables will vanish. The resulting

0/0 ambiguity can be regularized in a BRST-invariant manner using the regularization

prescription developed with Nikita Nekrasov in [4].

In this paper, we shall review how this regularization prescription works for general

multiloop scattering amplitudes. Furthermore, we will give the first non-trivial application

of this regularization procedure by computing a 4-point one-loop amplitude when all four

vertex operators are chosen in Siegel gauge in integrated form. Note that, as in bosonic

string theory, N -point one-loop amplitudes can be computed using N integrated vertex

operators only if all of the vertex operators are in Siegel gauge. So all previous one-loop

computations using the pure spinor formalism required at least one unintegrated vertex

operator.

It is possible that this new one-loop amplitude prescription will be useful for compar-

ing with the operator approach in the pure spinor formalism, or with other superstring
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prescriptions such as the Lee-Siegel [5] or RNS prescriptions. Another possible application

of our results is for super-Poincaré covariant open superstring field theory. Although a

cubic open superstring field theory action has been constructed using the pure spinor for-

malism [6], the gauge-fixing of this action has not yet been performed. It seems likely that

the gauge-fixing techniques developed here will also be useful for gauge-fixing the open

superstring field theory action.

This paper is organized as follows. In section 2, the basics of the pure spinor formalism

is reviewed and, in section 3, the regularization method proposed in [4] to deal with (λλ)

poles is explained. Section 4 deals with the construction of the vertex operators in the Siegel

gauge. Both unintegrated and integrated vertex operators are described, and some of their

properties are studied. In section 5, the Siegel gauge vertex operators are used to define

a new n-point 1-loop amplitude prescription that uses only integrated vertex operators.

In addition, the regularization of [4] is explained using the example of the 4-point 1-loop

amplitude. We conclude in section 6 and indicate some directions for future works.

Note: while this paper was being written up, we received a draft of a paper by P.A. Grassi

and P. Vanhove which also discusses Siegel gauge vertex operators and regularization in

the pure spinor formalism. However, their discussion differs considerably from our paper.

At the end of section 3, we have added some comments related to their paper [7] which

appeared shortly after the original version of this paper.

2 A review of the pure spinor formalism

We begin by reviewing certain aspects of the pure spinor formalism that are relevant to

the present paper.

2.1 World sheet fields

Field contents of the worldsheet theory of the pure spinor formalism can be divided into

matter and ghost sectors. The former consists of the Green-Schwarz-Siegel variables [8]

(xm; pα, θ
α), m = 0, · · · , 9 , α = 1, · · · , 16 (2.1)

that describe the embedding of the string in a superspace (xm, θα).1 They satisfy free

field OPEs

xm(z)xn(w) = −ηmn log(z − w) , pα(z)θβ(w) =
δα

β

z − w
. (2.2)

The ghost sector consists of a conjugate pair of bosonic spinors

(ωα, λ
α) , (2.3)

1Throughout, we shall use the notation appropriate for describing a chiral half of the closed string theory,

but use a terminology appropriate for the open string.
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but they must be treated with care as they are not genuine free fields; instead, λα (weight

0) is subject to the so-called pure spinor constraint

λαγm
αβλ

β = 0 , (2.4)

where γm
α is the symmetric 16 × 16 gamma matrices in ten dimensions.

To be consistent with this constraint, the conjugate ωα (weight 1) is defined up to a

gauge transformation

δωα(z) = Ωm(z)(γmλ)α , (2.5)

and ωα can only appear in gauge invariant combinations. Some basic invariants of

this gauge transformation are λ-charge current Jλ, Lorentz generator Nmn and energy-

momentum tensor Tλ defined as

Jλ = ωλ , Nmn =
1

2
(ωγmnλ) , Tλ = ω∂λ . (2.6)

The OPE algebra formed by those basic gauge invariants can be computed by param-

eterizing the components of λα and ωα by U(5) covariant genuine free fields. The resulting

algebra is

Nmn(z)λα(w) =
1
2(γmnλ)α(w)

z − w
, Jλ(z)λα(w) =

λα(w)

z − w
,

Nmn(z)Npq(w) =
−3(ηnpγmq − ηmpηnq)

(z − w)2
+
ηnpNmq(w) + (3-terms)

z − w
,

Jλ(z)Jλ(w) =
−4

(z − w)2
, Jλ(z)Nmn(w) = regular ,

Nmn(z)Tλ(w) =
Nmn(w)

(z − w)
, Jλ(z)Tλ(w) =

−8

(z − w)3
+

Jλ(w)

(z − w)2
,

Tλ(z)Tλ(w) =
11

(z − w)4
+

2Tλ(w)

(z − w)2
+
∂Tλ(w)

z − w
.

(2.7)

2.2 Physical states

Physical open string states are defined as the ghost number (λ-charge) 1 cohomology of a

nilpotent BRST operator

Q =

∮
λαdα (2.8)

where

dα = pα +
1

2
(γmθ)α∂x

m −
1

8
(γmθ)α(θγm∂θ) (2.9)

has the form of the phase space constraint of the classical Green-Schwarz action. Using

the free field OPE between pα and θα, dα satisfies

dα(z)dβ(w) =
Πmγ

m
αβ

z − w
(2.10)
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where Πm = ∂xm + 1
2(θγm∂θ) is the supersymmetric momentum. dα and Πm acts on

superfields as supercovariant derivatives:

Dα = ∂α −
1

2
(γmθ)α∂m, Pm = −∂m . (2.11)

For example, massless states are described by the λ-charge 1 vertex operator

V = λαAα(x, θ) . (2.12)

The cohomology condition QV = 0 and δV = QΩ implies that the superfield Aα satisfies

the correct on-shell constraint γαβ
m1···m5

DαAβ = 0 and gauge invariance δAα = DαΩ.

Although the form of the BRST operator above appears strange at first sight, its ghost

number 1 cohomology can be explicitly studied using an SO(8) parameterization of pure

spinors and it reproduces the lightcone spectrum of the Green-Schwarz superstring [9].

Moreover, there are arguments that it can in fact be derived from the classical Green-

Schwarz action [10–14], and that it is related to the BRST operators of Ramond-Neveu-

Schwarz and Green-Schwarz formalisms by similarity transformations [16].

Finally, Q has cohomologies at other λ-charges as well. They are interpreted as space-

time ghosts, antifields and antighosts.

2.3 Pure spinor sector as a curved βγ system: non-minimal formalism

At first sight, handling a non-linearly constrained system such as the pure spinor system

appears difficult. However, it can be treated rigorously using the theory of curved βγ-

systems [17] (if the origin λ ≡ 0 of the pure spinor space is removed [20]). One way to

apply this idea to the pure spinor formalism is to introduce another set of pure spinors and

its fermionic partners, (ωα, λα; sα, rα).

λα is an antichiral pure spinor (weight 0)

λαγ
αβ
m λβ = 0 , (2.13)

rα is a fermionic field (weight 0) that is constrained as

rαγ
αβ
m λβ = 0 , (2.14)

and ωα and sα are the conjugate momenta (weight 1) of λα and rα, respectively. In ten

dimensional Euclidean space, λα can be regarded as the complex conjugate of λα, and rα
is an extension of the target space differential of λα:

rα ∼ dλα . (2.15)

Just as ωα must appear in invariant combinations under the gauge transformation

δωα = Ωm(γmλ)α, the conjugates ωα and sα must appear in invariant combinations under

δωα = Ωm(γmλ)α − φm(γmr)α , δsα = φm(γmλ)α , (2.16)
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for arbitrary Ωm and φm. Some basic invariants are

Nmn =
1

2
(ωγmnλ− sγmnr) , Jλ = ωλ− sr , Tλ = ω∂λ− s∂r , (2.17)

Jr = −sr , Smn =
1

2
(sγmnλ) , S = sλ .

By parameterizing non-minimal variables by U(5) covariant free fields (antiholomorphic

local coordinates on the pure spinor space and their conjugates), OPE’s among the basic

invariants can be computed. In particular, they satisfy

Jr(z)Jr(w) =
11

(z − w)2
, Jλ(z)Jr(w) =

8

(z − w)2
, Jλ(z)Jλ(w) = regular ,

Jr(z)Tλ(w) =
11

(z − w)3
+

Jr(w)

(z − w)2
, Jλ(z)Tλ(w) =

Jλ

(z − w)2
,

Tλ(z)Tλ(w) =
2Tλ(w)

(z − w)2
+
∂Tλ(w)

z − w
. (2.18)

Therefore, the addition of the non-minimal sector does not affect the total central charge,

but the total ghost number anomaly is shifted to 3 = 11 − 8, if one defines the ghost

number by

Jg = Jλ − Jr − Jλ = ωλ− ωλ . (2.19)

Physical states are then redefined as the ghost number 1 cohomology of a nilpotent

BRST operator

Q = Q0 +Q1

Q0 =

∮
λαdα , Q1 =

∮
rαω

α .
(2.20)

Subscripts denote the r-charge, but note that both Q0 and Q1 carry +1 charge under the

ghost number current Jg = ωλ− ωλ.

The additional piece Q1 of the BRST operator deals with the constrained nature of

the pure spinor, and is essential for having a composite b-ghost operator that satisfies

T = {Q , b} , (2.21)

for the total energy-momentum tensor T . For future reference, we here record the explicit

form of the b-ghost:

b = b−1 + b0 + b1 + b2 + b3

b−1 = sα∂λα

b0 =
λα[2Πm(γmd)

α −Nmn(γmn∂θ)α − Jλ∂θ
α − 1

4∂
2θα]

4(λλ)

b1 =
(λγmnpr)(dγmnpd+ 24NmnΠp)

192(λλ)2

– 6 –
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b2 =
(rγmnpr)(λγ

md)Nnp

16(λλ)3

b3 =
(λγmnpr)(rγp

qrr)NmnNqr

128(λλ)4
.

(2.22)

Now, Q1 itself is nilpotent and its cohomology can be regarded as the operator space of

the pure spinor sector. In [23–25], the structure of this operator space was studied by com-

puting its partition function. One outcome of the investigation was that Q1-cohomology

consists of two sectors H0(Q1) and H3(Q1), and there is a one-to-one mapping between

the two. (Here, the degree of the cohomology is the differential form degree carried by

rα ∼ dλα.) An important element of H3(Q1) is the tail term b3 of the composite b-ghost.

It was found that H3(Q1) is essential for having the operator doubling between spacetime

fields and antifields, and found that the total cohomology H∗(Q1) has precisely the right

structure to kill the unphysical degrees of freedom contained in the covariant oscillators

(xm, pα, θ
α), up to the fifth mass level.

Having introduced the basic ingredients of the pure spinor formalism, we now turn to

the description of scattering amplitudes.

2.4 Tree amplitude

To compute n-point tree amplitudes, one uses 3 unintegrated vertex operators V and n−3

integrated vertex operators
∫

dzU(z) as in the bosonic string, where U carries weight 1,

ghost number 0, and is related to V as QU = ∂V :

An =

∫ n∏

i=4

d2wi|〈V1(z1)V2(z2)V3(z3)

n∏

i=4

U(wi)〉|
2 (2.23)

Here, 〈· · · 〉 denotes functional integrations over (θα, λα, λα, rα). (We ignore the functional

integration over xm for simplicity because there is nothing special about it in the pure

spinor formalism.)

After integrating out the non-zero modes using OPE’s, one is left with the zero-mode

integration of the form

A =

∫
[dλ][dλ][dr]d16θ N f(λ, λ, r, θ) , (2.24)

where f(λ, λ, r, θ) is a function of the zero modes, and the zero mode measures behave as

[Dλ] = λ−3d11λ , [Dλ] = λ
−3

d11λ , [Dr] = λ
3
d11r . (2.25)

Now, this zero mode integration is ambiguous due to an indefinite factor ∞ · 0 that

comes from non-compact bosonic integration over λα and λα, and unsaturated fermionic

integration over θα and rα. However, this difficulty can be easily overcome by inserting a

regularization factor of the form

N0 = exp{Q,χ} . (2.26)

– 7 –
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Since N0 = 1 + QΩ for some Ω, N0 respects BRST symmetry, and one is free to choose

whatever χ that is convenient for computing amplitudes. A simple and convenient choice is

χ = −λθ , (2.27)

which leads to

N0 = exp(−λλ− rθ) . (2.28)

N0 puts an exponential cut-off for bosonic zero-modes, and provides extra fermionic zero-

modes via an expansion of the exponential. By now, it is well tested that this prescription

lead to correct tree amplitudes (see for example [26] for a review).

2.5 Loop amplitudes

We now turn to the discussion of loop amplitudes. A natural prescription to use for the

n-point g-loop amplitude is

Ag =

∫

Mg,n

d3g−3τk

n∏

i=1

∫
d2wi

3g−3∏

k=1

∫
d2zk|〈

3g−3∏

k=1

(µk · b)(zk)
n∏

i=1

U(wi)〉|
2 , (2.29)

where τk and µk are the Teichmüller parameters and associated Beltrami operator, and

the bracket 〈· · · 〉 denotes functional integrations over the worldsheet fields. However, this

prescription is incomplete as there are two subtleties with the functional integration over

zero modes.

The first subtlety comes from the proper definition of an ∞ · 0 factor associated with

the integration over non-compact bosonic zero modes, and over unsaturated fermionic zero

modes. This indefinite factor can be defined as before by inserting an operator of the form

N0 = exp{Q,χ0} to the zero mode integral. The only modification needed is that now

there are zero modes for weight 1 operators (Nmn,Nmn, Jλ, Jλ, Smn, S) as well.

A convenient choice for χ0 is

χ0 = −λθ −
1

2

g∑

I=1

(NI,mnS
mn
I + JISI) (2.30)

where (NI,mn, JI ;SI,mn, SI)I=1∼g are the g zero modes of the corresponding operators

defined in (2.17). For this choice, the zero mode integration comes with an insertion of

N0 = exp[−(λλ+ rθ)]

× exp

g∑

I=1

[
−

1

2
NI,mnN

mn
I − JIJI −

1

2
SI,mn(dIγ

mnλ) − SI(λdI)

]
.

(2.31)

N0 puts an exponential cut-off for bosonic zero-modes, and provides extra fermionic zero-

modes via an expansion of the exponential.

There is another (possible) source of an indefinite factor ∞ · 0 coming from the inte-

gration around (λλ) ∼ 0. This second subtlety is due to the (λλ) poles in the integrand
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that could come from the measure, from the insertion of the composite b-ghosts, and from

the vertex operators. When the order of the (λλ) pole is too high, one gets a divergence

upon integrating near (λλ) ∼ 0. However, this type of divergence always comes with a zero

coming from an over saturation of r zero modes, and it was shown in [4] how to regularize

and define this indefinite factor.

Since this regularization for (λλ) ∼ 0 is slightly involved, we shall explain it in a

separate (next) section. In the absence of the second subtlety at (λλ) → 0, the prescription

above is well tested and known to lead to correct loop amplitudes [27]. (See [26] for a review

on the subject, and [28] for an extension of loop computations to eleven dimensions.)

3 Regularization of (λλ) ∼ 0

In this section, we explain the regularization prescription of [4] for the functional integral

region (λλ) ∼ 0. Although the basic idea of [4] is simple, the formulas there ended up

complicated because one had to make the prescription consistent with the pure spinor

constraint (or more specifically, with the gauge invariance under δωα = (γmλ)αΩm). In

order to demonstrate how the prescription regularizes the region (λλ) ∼ 0, we here ignore

the subtleties coming from the pure spinor constraint.

3.1 Terms requiring regularization of (λλ) ∼ 0

To estimate the order of divergence as (λλ) approaches 0, it is more convenient to use

ωα and ωα instead of their gauge invariant counterparts, (Nmn, Jλ) and (Nmn, Jλ). On a

genus g surface, the zero mode integration measures for the pure spinor variables behave

as [6]

[Dλ] = λ−3d11λ , [DN ] = λ−8gdgJd10gN → [Dω] = λ3gd11gω , (3.1)

[Dλ] = λ
−3

d11λ , [Dω] = λ
3g

d11gω , [Dr] = λ
3
d11r , [Ds] = λ

−3g
d11gs .

The total measure thus goes as

[DλDλDωDωDrDs] = λ3g−3d22λd22gωd11rd11gs (3.2)

where we denoted d22λ = d11λd11λ etc.

So when the poles of the various operators in the correlator add up to λ
−11

λ−3g−8 or

higher, the zero-mode path integrals over λα and λα become ill-defined because

∫
d22λ

1

(λλ)L
(3.3)

diverges at (λλ) → 0 for L ≥ 11. Fortunately, it turns out that each factor of (λλ)−1 comes

with a factor of rα, so for L > 11 one always gets a zero from over-saturated rα zero modes

as well. (The case of L = 11 will be discussed at the end of section 3.2.) To see this, note

that on a genus g surface, one needs 3g − 3 b ghost insertion and each term in the b ghost

– 9 –
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goes as λrk−1/(λλ)k. Hence, after combining with the λ3g−3 pole from the measure, one

indeed gets integration of the form

∫
d22λd11r

∑

k

rk

(λλ)k
. (3.4)

Therefore, the problem is again to define the integral of

∫
d22λd11r

rL

(λλ)L
∼ 0 · ∞ , (L ≥ 11). (3.5)

Using the idea described in [4], we now explain that an appropriate regularization can be

done by an insertion of an operator of the form N ′(y) = exp{Q,χ(y)} = 1 +QΩ(y).

3.2 Regularization of (λλ) ∼ 0

In order to concentrate on the main idea, we first explain how to regularize the divergent

integral (3.3) over λα and λα, ignoring the zero that comes from rα integration. The

method can be extended to respect the BRST invariance, and then it naturally defines the

0 · ∞ of (3.5).

The basic idea of [4] is to prevent the (λλ) poles in operators at different worldsheet

positions from diverging simultaneously. This can be achieved by shifting the target-space

location of each pole by different constants fi’s:

n∏

i=1

1

|λ(wi)|2li
→

n∏

i=1

1

|λ(wi) + fi|2li
. (3.6)

Then, after integrating out the non-zero modes, one is left with the integrand of the form

n∏

i=1

1

|λ+ fi|2li
,

∑
li = L (3.7)

instead of just (λλ)−L. The integration over (λ, λ) is now well defined as long as li < 11

in each factor |λ+ fi|
−2li . Eventually, one can average over the constants fi’s to get a

finite result.

To achieve the shifting in the pure spinor formalism in a BRST invariant manner, we

introduce a constant pure spinor fα and its fermionic partner gα (targetspace differential

∼ dfα), as well as their complex conjugates fα and gα. They are constrained as

fαγm
αβf

β = fαγm
αβg

β = fαγ
αβ
m fβ = fαγ

αβ
m gβ = 0 . (3.8)

Then, we extend the BRST operator to

Q→ Q′ = Q+ fα ∂

∂gα
+ gα

∂

∂fα

(3.9)

and introduce an additional regularization factor of the form

N ′(y) = exp{Q,χ(y)} (3.10)
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at an arbitrary point y on the worldsheet. To achieve the shift, we include gαωα(y) +

fαs
α(y) in χ(y), and also put zero modes

∑
I ωα,Is

α
I to impose an exponential cut-off for

the integration over ωα and ωα.2 So we have

N ′(y) = exp

[
−

g∑

I=1

(ωα
I ωα,I + sα

I dα,I)

]

× exp(fαωα(y) + gαdα(y) + fαω
α(y) + gαs

α(y)) .

(3.11)

Unlike the zero mode regulator N0 for (λλ) → ∞, the regulator N ′(y) includes non-zero

modes in an essential way. In particular, non-zero modes of sα are important for removing

extra rα’s in the integrand.

The easiest way to understand that N ′(y) indeed brings about the desired shift of poles

is to use the path integral formalism. On a genus g surface, each component of ωα and λα

can be expanded by a complete set of eigenfunctions of the worldsheet Laplacian as:

ωα(z) =

g∑

I=1

ωα,IΩI(z) +
∑

I′

ωα,I′ΩI′(z, z̄) (3.12)

λα(z) = λα
0 Λ0 +

∑

I′

λα
I′ΛI′(z, z̄) . (3.13)

Here, Ωα,I(z) (I = 1 ∼ g) are g zero modes of ωα, Λ0 is the zero mode of λα, ΩI′(z) and

ΛI′(z) are the non-zero modes of ωα and λα. Then, the Green function

G(y, z) =
∑

I′

ΩI′(y, ȳ)ΛI′(z, z̄) (3.14)

satisfies

∂ȳG(y, z) =
∑

I′

Λ∗
I′(y, ȳ)ΛI′(z, z̄) = δ2(z − y) − |Λ0|

2 (3.15)

∂z̄G(y, z) =
∑

I′

ΩI′(y, ȳ)Ω
∗
I′(z, z̄) = δ2(z − y) −

∑

I

ΩI(y)Ω
∗
I(z) . (3.16)

Now, using the Green function G(y, z), N ′(y) can be rewritten as

N ′(y) = exp

[
−

g∑

I=1

(ωα
I ωα,I + sα

I dα,I)

]

× exp

∫
d2zδ2(y − z)(fαωα + gαdα + fαω

α + gαs
α)(z) (3.17)

= N ′
0 × exp

∫
d2z∂z̄G(y, z)(fαωα + gαdα + fαω

α + gαs
α)(z) , (3.18)

2In [4], the zero mode cut-off exp{Q,−fg} = exp(−ff − gg) was included in N ′ instead of the cut-off

for ωα and ωα, exp
P

(−ωω − sd). Since we have a factor of exp(fω + fω) in N ′ as well, both should have

the same effect upon integration, but we found it simpler in practice to use our choice.
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where

N ′
0 = exp

g∑

I=1

[−(ωα,Iω
α
I + sα

I dα,I) + (fαωα,I + gαdα,I + fαω
α
I + gαs

α
I )] , (3.19)

and (ωα,I , ω
α
I , dα,I , s

α
I ) are the g zero modes of (ωα, ω

α, dα, s
α). Therefore, except for the

zero mode factor N ′
0, insertion of N ′(y) in the path integral can be absorbed into the

change of variables3

λ′α(z) = λα(z) + fαG(y, z) , λ
′
α(z) = λα(z) + fαG(y, z) ,

θ′α(z) = θα(z) + gαG(y, z) , r′α(z) = rα(z) + gαG(y, z) , (3.20)

x′m(z) = xm(z) −
1

2
gα(γmθ(y))αG(y, z) , d′α(z) = dα(z) + (gγm)αΠm(y)G(y, z) ,

as in
∫
Dφ N ′(y) exp(−S) =

∫
Dφ N ′

0 exp(−S′) (3.21)

S =

∫
d2z

(
1

2
∂zx

m∂z̄xm + p∂z̄θ − ω∂z̄λ− ω∂z̄λ+ s∂z̄r

)
. (3.22)

In other words, the path integral definition of the correlation functions

〈O1(w1)O2(w2) · · ·On(wn)〉 =

∫
Dφ exp(−S)N ′(y)O1(w1)O2(w2) · · ·On(wn) (3.23)

is equivalent to

〈O1(w1)O2(w2) · · ·On(wn)〉′ =

∫
Dφ′ exp(−S′)N ′

0(y)O
′
1(w1)O

′
2(w2) · · ·O

′
n(wn) , (3.24)

where in O′
i(wi), variables (λα, λα, θ

α, rα) are shifted as in (3.20). For example, an operator

of the form

r3F (x, θ)

(λλ)3
(wi) , (F : some superfield) (3.25)

gets modified to

(r′ + gi)
3F (x′ − 1

2giγθ, θ
′ + gi)

|λ′ + fi|6
(wi) (3.26)

where we abbreviated as

fα
i = fαG(y,wi) . (3.27)

Below, we omit primes from (λα, λ, θα, rα) for simplicity.

3 We thank Joost Hoogeveen for pointing out that xm must also be included in the change of variables.
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So, the computation of a g-loop amplitude typically reduces to a sum of zero mode

integrations of the form

∫
d16gdd16θd22gω

∫
d22fd22g

∫
d22λd11rN0N

′
0

∏

i

(r + gi)
liFi(x− 1

2giγθ, θ + gi)

|λ+ fi|2li
.

(3.28)

When the total order of divergence
∑
li is smaller than 11, N ′

0 regularization does nothing

and the integral goes back to that of section 2. The case when
∑
li = 11 is special and will

be discussed at the end of this subsection. When 11 <
∑
li < 22, only the N ′

0 regularization

is necessary, and we can set N0 = 1 using BRST invariance. Moreover, provided each li is

smaller than 11, one can show that the integral (3.28) is finite (possibly zero due to a lack

of some fermionic zero modes).

To prove this, first introduce parameters (c, ε, ε) in N ′ as

N ′(y) = exp

[
− c

∑

I

(ωα
I ω

α
I + sα

I dα,I)

]

× exp[ε(fαωα(y) + gαdα(y) + ε(fαω
α(y) + gαs

α(y))] .

(3.29)

BRST invariance guarantees that the scattering amplitude will be independent of (c, ε, ε).

Performing the integration over the zero modes ωα,I and ωα
I (I = 1 ∼ g), this yields an

exponential cut-off

exp[−
εε

c
(fαf

α + gαg
α)] (3.30)

for fα and fα. Then, it can be shown that the integration over (λα, λα, f
α, fα) is finite.

When
∑
li > 11, it is clear that the only region of integration that can cause divergence is

where all (λα, λα, f
α, fα) become small of order ǫ. But thanks to the smearing by f ’s, the

integral is now finite in this region for 11 < L =
∑
li < 22:

∫
d22λ

1

|λ|2L
∼ ǫ22−2L →

∫
d22fd22λ

1

|λ+ f |2L
∼ ǫ44−2L . (3.31)

Although the N ′ regularization described so far only works when the order of (λλ) is

below 22, the estimate of the integral above also shows what to do if the order of (λλ) poles

sum up beyond 22. For example, when the total order of divergence L satisfies 22 < L < 33,

one only has to introduce another copy of smearing variables (f ′α, g′α, f
′
α, g

′
α), and extend

the regulator N ′(y) so that λα gets shifted by both fα and f ′α. Then, one eventually gets

the integral of the form

∫
d22fd22f ′d22λ

1

|λ+ f + f ′|2L
∼ ǫ66−2L , (3.32)

which is finite when L < 33.

Finally, we shall discuss the case when
∑
li = 11n for any positive integer n and

will argue that these terms do not contribute to BRST-invariant amplitudes. In this case,
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an analysis similar to (3.31) and (3.32) implies that integration over the bosonic variables

(λα, fα) gives a logarithmic dependence on ε. However, integration over the fermionic vari-

ables (θα, gα) can only give polynomial dependence on ε. Since BRST-invariant amplitudes

must be independent of ε, this suggests that terms with
∑
li = 11n cannot contribute to

BRST-invariant scattering amplitudes.

To see more explicitly why this happens, consider the term with
∑
li = 11

V11 ≡
(λ3r11)

(λλ)11
(θ)16 (3.33)

where (λ3r11) denotes the unique Lorentz-invariant contraction of three pure spinor λ’s

and 11 fermionic r’s. Since the functional integral

∫
d22λd11r d16θN V11 (3.34)

is nonzero, such a term would contribute to the scattering amplitude if V11 were present

in the BRST invariant integrand f(λ, λ, r, θ) of (2.24).

However, V11 cannot appear as part of a BRST-invariant expression for the following

reason. First, note that V11 is in the cohomology of Q1 =
∮
rαω

α and that the only

non-trivial cohomology of Q = Q0 + Q1 at weight 0 and ghost number 3 is (λ3θ5) ≡

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ). So the only possible way for V11 to be a part of a BRST

invariant operator
∑11

k=0 Vk is if

11∑

k=0

Vk = a(λ3θ5) +Q

( 11∑

k=0

Λk

)
(3.35)

for some set of Λk’s, where a is a constant and the subscript k denotes the term proportional

to rk. Since Q = Q0 + Q1 where Q0 = λα ∂
∂θα and Q1 = rα

∂
∂λα

, this would imply that

V11 = Q0Λ11 +Q1Λ10. Since V11 is proportional to (θ)16 and Q0 lowers the number of θ’s,

Λ11 must vanish which implies that V11 = Q1Λ10. But this cannot happen because V11 is

in the cohomology of Q1. Therefore, the eleventh pole simply does not contribute to the

BRST invariant amplitude, and the N ′ regularization is unnecessary.

Similarly, the only dangerous term for
∑

i li = 22 with a single set of smearing vari-

ables is

V22 ≡
(λ3r11)(gg)11(θ)16∏

i |λ+ fi|2li
∈

(λ)3(r + g)22(g)11(θ)16∏
i |λ+ fi|2li

. (3.36)

Again, one can argue that this is in the cohomology of Q1 = rα
∂

∂λα
+ gα

∂
∂fα

but cannot

be part of a BRST invariant operator where now the BRST operator is extended to Q =

Q0 + Q1 with Q0 = λα ∂
∂θα + fα ∂

∂gα . So the twenty-second pole cannot contribute to the

BRST invariant amplitude as well.

It is important to stress that the N ′(y) regulator is necessary for resolving 0/0 ambigu-

ities and does not affect the computation of terms with
∑
li < 11 where such ambiguities

are not present. Similarly, if one has two copies of N ′(y1)N
′(y2) inserted at different
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points of the worldsheet, the extra regulator does not affect the computation of terms

with
∑
li < 22. So for an amplitude computation whose maximum order of divergence is

L =
∑
li, it is sufficient to insert L/11 regulators at different points on the worldsheet. Of

course, one can always insert more than L/11 regulators, but the additional regulators will

not affect the computation.

It is also important to stress that if one does not include a sufficient number of reg-

ulators, the amplitude is ambiguous since one has a divergence (coming from the bosonic

functional integral) multiplied by a zero (coming from the fermionic functional integral).

In a recent paper [7], Grassi and Vanhove claimed that the amplitude is vanishing if one

does not include a sufficient number of regulators, which would lead to a violation of uni-

tarity. Their claim was based on doing the fermionic functional integral before doing the

bosonic functional integral, in which case they obtained the zero but ignored the diver-

gence. However, any proper regularization procedure should be independent of the order

of integration. So it is necessary to first regularize the divergence in the bosonic functional

integral before attempting to do the fermionic functional integral.

Grassi and Vanhove also proposed a new regulator in [7] of the form

N̂ = exp

[
−

1

λλ̄
− rα

(
δα
β

(λλ̄)2
− 2

λαλ̄β

(λλ̄)3

)
θβ

]
(3.37)

which removes the divergence when λλ̄ → 0. However, their regulator does not remove

the divergence when λλ̄ → ∞. Although they claim that the divergence when λλ̄ → ∞

can be ignored because of the (λλ̄)−1 factors coming from the integration over the r zero

modes, this claim is based on the assumption that one can first do the fermionic functional

integral before doing the bosonic functional integral. However, as stressed above, any

proper regularization procedure must be independent of the order of integration. Since

performing the bosonic functional integral before performing the integration over the r

zero modes leads to an ambiguous answer using the regulator of [7], their regularization

procedure is incomplete. Regularization of the bosonic functional integral when λλ̄ → ∞

is expected to require additional insertions involving d zero modes. Note that these extra

d zero modes must arise from the regularization of divergences, and cannot be included by

simply modifying the gauge-fixing condition as suggested in [7].

This concludes our explanation of the regularization method of [4] and we now turn

to the construction of vertex operators in the Siegel gauge.

4 Vertex operators in the Siegel gauge

in the Siegel gauge. In the Siegel gauge, vertices are annihilated by b0 so the equation of

motion implied by Q = 0 is simply L0 = 0 (and � = 0 for the massless vertex). Therefore,

the gauge is an extension of the Lorentz gauge where the photon wave function satisfies

Pmam(x) = 0.
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4.1 Unintegrated vertex operators in the Siegel gauge

In the review of the pure spinor formalism above, we defined the physical vertex operators

to be the cohomology elements of the BRST operator

Q = Q0 +Q1 , (4.1)

where Q0 =
∮
λαdα, and Q1 =

∮
rαω

α. Conventionally, however, the vertex operators have

been assumed to be annihilated by Q0 and Q1 separately.4 This is a particular choice of a

gauge for the cohomology representatives of Q = Q0 +Q1; we shall refer to this gauge as

the “minimal gauge”.

In the minimal gauge, vertices are independent of non-minimal variables,

(ωα, λα, s
α, rα), and have no poles in λλ. For example, the unintegrated vertex opera-

tors for the massless and the first massive modes are given by the most general λ-charge 1

operators of this type,

V min
massless = λαAα(x, θ) , (4.2)

V min
1st massive = ∂λαBα(x, θ) + λα∂θβBαβ(x, θ) + λαdβBα

β(x, θ)

+ λαΠmBαm(x, θ) + λαJBα(x, θ) + λαNmnBαmn(x, θ) , (4.3)

and it had been explicitly checked that the cohomology condition with respect to Q0 =∮
λαdα yields the correct on-shell constraints and gauge invariance conditions on the su-

perfields Aα(x, θ), Bα(x, θ), · · · , Bαmn(x, θ) [1, 29].

Although the minimal gauge is convenient for many calculations, it is more natural

and sometimes necessary to allow more general dependencies on the pure spinor sector. A

natural class of (massless) vertex operators with ghost number 1 is given by

V = V1 + · · · + Vp

=
λα0

λβλγCα0
βγ(x, θ)

(λλ)
+ · · · +

λα0
rα1

· · · rαp
λβλγCα0α1···αp

βγ(x, θ)

(λλ)p+1
,

(4.4)

where the ghost number is measured by Jg = ωλ − ωλ. Note that as in the b ghost, V

has been defined such that (rα
∂

∂rα
+ λα

∂
∂λα

)V = 0. Since the composite b-ghost depends

non-trivially on r/(λλ), it is clear that the Siegel gauge condition b0 = 0 can be achieved

only if one allows the vertex operators to depend on the non-minimal fields as in (4.4).

Note that the choice of (4.4) allows one to choose different gauges for the superfields

C’s on different coordinate patches of the pure spinor space. The simple form of the vertex

in (4.2) should then be understood as a special choice of the gauge for C’s such that the

vertex is globally defined on the pure spinor space (or in other words, independent of the

non-minimal variables).

We shall now show that the Siegel gauge can be achieved within the general form of the

vertices (4.4) by explicitly constructing them. To be concrete, we explain our construction

4 In the Čech type formulation of curved βγ systems, this corresponds to the operators defined globally

on the pure spinor space.
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using the massless vertex as an example, but the construction works for massive fields as

well.5 We start from the ghost number 2 cohomology of Q

V ∗ = λαλβAαβ(x, θ) , (4.5)

with Aαβ(x, θ) a bosonic superfield. Our Siegel gauge vertex operator is then defined as

V (z) = b0V
∗(z) ≡

∮
dy(y − z)b(y)V ∗(z) (4.6)

which is obviously annihilated by b0. More explicitly, V reads

V = V0 + V1 + V2 + V3 , (4.7)

where

V0 = (b0)0V
∗ = −

λαλ
βλγ(/PD)αAβγ

2(λλ)
, (4.8)

V1 = (b1)0V
∗ =

(λγmnpr)[λβλγ(DγmnpD) − 24(γmnλ)βλγPp]Aβγ

192(λλ)2
, (4.9)

V2 = (b2)0V
∗ = −

λα(rγmnpr)(γmnλ)βλγ(γpD)αAβγ

16(λλ)3
, (4.10)

V3 = (b3)0V
∗ =

(λγmnpr)(rγp
qrr)(γmnλ)β(γqrλ)γAβγ

256(λλ)4
. (4.11)

Let us now study the gauge condition implied by the construction above. The co-

homology condition on V ∗ implies that Aαβ(x, θ) is subject to the constraint and gauge

invariance of

D((αAβγ)) = 0 , δAαβ = D((αΩβ)) , (4.12)

where Ωβ(x, θ) is an arbitrary superfield, and the notation ((α1 · · ·αn)) signifies symmetric

γ-traceless combination of spinorial indices. From the antifield calculus in ten dimensional

super-Maxwell theory, it is well known [2, 30] that Aαβ(x, θ) contains a vector at θ4, whose

“equation of motion” is the Lorentz gauge condition

Pmam(x) = 0 . (4.13)

So our construction explains that the Siegel gauge b0V = 0 is indeed an extension of the

Lorentz gauge, as is expected.

Several remarks are in order before turning to the construction of integrated vertex

operators in the Siegel gauge.

First, we note that the construction above in fact parallels that of the bosonic string.

In the bosonic string, the notion of the Siegel gauge and that of field (V = cψ(x)) and

5 Antifield vertices for the massive modes have not been computed explicitly in the pure spinor literatures,

but strong evidence for the fact that the space of pure spinor vertices enjoys field-antifield symmetry was

presented in [23, 24].
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antifield (V ∗ = c∂cψ∗(x)) are manifestly related because there the field-antifield doubling

comes from the ghost zero-mode oscillators satisfying {b0, c0} = 1. Also, it is clear that the

field (or Siegel gauge) vertex operators can be obtained from the antifield vertex operators

by acting with b0.

In the pure spinor formalism, however, there is no c ghost so a priori the field-antifield

doubling and the Siegel gauge choice are unrelated. Moreover, the b ghost is a compli-

cated operator that may have non-trivial cohomologies, so one might even worry that the

condition b0V = 0 on the vertex of the form (4.4) does not have a solution. However,

our construction explains that the only structure needed for solving b0V = 0 is the field-

antifield symmetry of the operator space. The presence of the field-antifield symmetry is

non-trivial in the pure spinor formalism, but is strongly supported by the study of the pure

spinor partition functions in [23, 24].

Finally, in our construction, we have not specified the gauge for the superfield in V ∗.

However, it is easy to see that any choice of gauge leads to a vertex in the Siegel gauge. The

“pre-gauge transformation” δV ∗ = Q(λαΩα) simply modifies the Siegel gauge vertex V by

δV = b0(Q(λαΩα)) = L0(λ
αΩα) −Q(b0(λ

αΩα)) (4.14)

The first term vanishes if Ωα has weight 0, and the second term is the remaining gauge trans-

formation in Siegel gauge analogous to the residual gauge transformation of the Maxwell

theory in the Lorentz gauge.

4.2 Massless integrated vertex operator in the Siegel gauge

We now turn to the construction of the integrated vertex operators. We exclusively consider

massless vertices. Given a Q-closed unintegrated vertex operator V in an arbitrary gauge,

the corresponding integrated vertex operator U satisfying

QU(w) = ∂V (w) (4.15)

can be obtained by defining

U(w) = b−1V (w) . (4.16)

Since {Q , b−1} = L−1, it is clear that U satisfies (4.15).

For the Siegel gauge vertex operator V = b0V
∗ of the previous subsection, U is a

conformal primary of weight 1. Indeed, since b and V ∗ has at most a double pole, one

easily finds that for n > 0,

LnU = bn−1(b0V
∗) + b−1(bnV

∗) = −b0(bn−1V
∗) + 0 = 0 . (4.17)

Schematically, the integrated vertex operator U = b−1V is of the form

U = (b−1)−1V + ∂θαfα + Πmfm + dαf
α +

1

2
Nmnfmn , (4.18)

where (b−1)−1V denotes the simple pole of (sα∂λ
α
) with V , and the f ’s are constructed

from λα, λα, rα, and spacetime derivatives of the superfield Aαβ , e.g. DnAαβ(x, θ). Since
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their r dependence and the order of divergence as (λλ) → 0 become important for our

application, we record them here:

fα =
D3Aαβ

(λλ)0
+
rD2Aαβ

(λλ)1
+ · · · +

r3Aαβ

(λλ)3
, (4.19)

fm =
D4Aαβ

(λλ)0
+
rD3Aαβ

(λλ)1
+ · · · +

r4Aαβ

(λλ)4
, (4.20)

fα =
D5Aαβ

(λλ)0
+
rD4Aαβ

(λλ)1
+ · · · +

r5Aαβ

(λλ)6
, (4.21)

fmn =
D6Aαβ

(λλ)0
+
rD5Aαβ

(λλ)1
+ · · · +

r6Aαβ

(λλ)6
. (4.22)

Although the vertex operator U appears complicated, it simplifies considerably after

using the gauge invariance δAαβ = D((αAβ)) to gauge-fix

(λγm)αAαβ = 0. (4.23)

To see that this gauge choice is accessible, choose a U(1)×SU(5) decomposition of SO(10)

such that the only non-vanishing component of λα carries −5
2 U(1) charge. If Aab (for a = 1

to 5) denotes the component of Aαβ with +3 U(1) charge, the constraint λαλβλγDαAβγ = 0

implies that D(aAbc) = 0 where Da is the component of Dα with 3
2 U(1) charge. Since

{Da,Db} = 0, D(aAbc) = 0 implies that Aab = D(aΩb) for some Ωb. So Ωb can be used to

gauge Aab = 0. In the gauge Aab = 0, λαλβλγDαAβγ = 0 implies that D(aA
[cd]
b) = 0 where

A
[cd]
b denotes the component of Aαβ with +1 U(1) charge. So A

[cd]
b = DbΩ

[cd] for some Ω[cd],

which means that A
[cd]
b can also be gauged to zero. In the gauge where Aab = A

[cd]
b = 0, it

is easy to verify that (λγm)αAαβ = 0.

Since (λγmr) = 0 implies that the U(1) charge of rα is either −1
2 or −5

2 , one can use

U(1) invariance to verify in this gauge that all terms beyond r3 in (fα, fm, f
α) vanish, and

that all terms beyond r4 in fmn vanish. Note that λαλβλγDαAβγ = 0 implies in this gauge

that the U(1) charge of DαAβγ is less than or equal to −3
2 . It will turn out that when we

compute 4-point 1-loop amplitude using 4 U ’s, the only contribution will come from the

r3 term in dαf
α and the r4 term in 1

2N
mnfmn, namely

dα
r3D2Aαβ(x, θ)

(λλ)3
+Nmn

r4D2Aαβ(x, θ)

(λλ)4
. (4.24)

This concludes our construction of the massless integrated vertex operator in the Siegel

gauge, and we now argue that it can be used to compute n-point 1-loop amplitudes using

only integrated vertex operators.

5 New n-point 1-loop amplitude prescription

In this section, it will be shown that n-point 1-loop amplitudes in the pure spinor formalism

can be computed using n Siegel gauge integrated vertex operators of the previous section.
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5.1 Description of the problem

In bosonic string theory, the canonical prescription for computing n-point 1-loop amplitudes

is to use 1 unintegrated vertex operator and n − 1 integrated operators, with a single

insertion of the b ghost:

An =

∫
d2τ

∫ ( n∏

i=2

d2wi

)∣∣〈
∫

d2z(b · µ)(z)V (w1)

n∏

i=2

U(wi)〉
∣∣2 . (5.1)

However, it is well known that when the vertex operators are in Siegel gauge, the amplitude

can also be computed using only the integrated vertex operators as in

An =

∫
d2τ

Im τ

∫ ( n∏

i=1

d2wi

)∣∣〈Jg(z)

n∏

i=1

U(wi)〉
∣∣2 . (5.2)

Here Jg = −bc is the ghost number current (put at an arbitrary point z on the world-

sheet). So a natural question is if a similar prescription can also be used in the pure spinor

formalism when the vertex operators are in Siegel gauge.

To understand why Siegel gauge is necessary, let us first explain why prescriptions

of the type (5.2) with integrated vertex operators in the minimal gauge (Q1 = 0) give

zero for the massless 4-point 1-loop amplitude. In the non-minimal formalism, the bosonic

prescription (5.2) naively generalizes to

An =

∫
d2τ

Im τ

∫
d2w1 · · · d

2wn

∣∣〈NJg(z)U(w1) · · ·U(wn)〉
∣∣2 , (5.3)

where Jg = ωλ−ωλ is the ghost number current defined so that the BRST charge Q carries

charge +1, and

N0 = exp

[
− (λλ+ rθ)−

(
1

2
N

mn
Nmn + JλJλ +

1

2
Smn(λγmnd) + S(λd)

]
(5.4)

is the zero-mode regularization factor that is needed to define an indefinite factor (∞ · 0)

coming from non-compact bosonic integrals and unsaturated fermionic integrals.

Now, in order to have a non-vanishing result, one must saturate the 16 zero-modes of dα

on the torus. However, N0 can provide at most 11 dα zero-modes, and each unintegrated

vertex operator can only provide 1 dα zero-mode. So, for the 4-point amplitude it is

impossible to saturate the dα zero-modes in (5.3) and one gets a vanishing result.

To have a non-vanishing 4-point 1-loop amplitude using 4 integrated vertex operators,

an additional dα zero-mode must be supplied from somewhere. In [4] it was suggested that

the extra dα zero-mode could be provided from the additional regulator N ′(y) of section 3,

that is needed when the total λλ pole in the integrand adds up greater than or equal to 11.

Below, we shall show that in Siegel gauge, the 1-loop prescription of the form (5.1)

with a b-ghost insertion can be converted to the prescription of the form (5.2) that uses

only the integrated vertex operators. Moreover, we shall show that the additional regulator

of [4] does provide the missing dα zero-mode so that the 4-point 1-loop amplitude with this

new prescription is non-vanishing.
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5.2 The new 1-loop prescription and its derivation

In this subsection, we shall argue that the n-point 1-loop amplitude can be computed by

the prescription of the form

An =

∫
d2τ

Im τ

( n∏

i=1

∫
d2wi

)∣∣〈N0N
′
0

∮

A
dzJg(z)

( n∏

i=1

U ′(wi)

)
〉
∣∣2 , (5.5)

where N0 and N ′
0 are the zero mode regularization factors reviewed above, Jg = ωλ−ωλ is

the ghost number current, and U ′ is the “smeared version” of the Siegel gauge integrated

vertex operator. The smearing was caused by the non-zero modes in N ′(y). Below, we

shall omit the prime (that denotes the smearing) from various operators with its presence

understood.

We start from the conventional prescription of the form

An =

∫
d2τ

( n∏

i=2

∫
d2wi

)∣∣〈N0N
′
0

∮

A
dz(b · ∆v)(z)V (w1)

( n∏

i=2

U(wi)

)
〉
∣∣2 . (5.6)

Here, V is the Siegel gauge unintegrated vertex V = b0V
∗ and U = b−1V ; a non-trivial

cycle A and the discontinuity ∆vz across A of a quasi-conformal vector field vz are defined

in a pair; we take A as a horizontal cycle of length 1 on the real axis, and

vz =
1

(2i Im τ)
(z − z̄) (5.7)

has a unit discontinuity across A. vz is related to the Beltrami differential as µz
z̄ = ∂z̄v

z.

Since U has no poles with the b ghost (as is the case in the bosonic string), use of

this canonical prescription is natural. Moreover, the prescription (5.6) has the full BRST

invariance so, barring the usual concern with the moduli boundary contribution, arbitrary

BRST trivial pieces may be added to the vertex operators. In particular, one can go to the

minimal gauge (Q1 = 0) and there the prescription is well-tested to give the correct answers.

To convert the unintegrated vertex V (w1) in (5.6) to an integrated one, we first average

over its position w1:

An =

∫
d2τ

Im τ

( n∏

i=1

∫
d2wi

)∣∣〈N0N
′
0

∮

A
dzb(z)V (w1)

( n∏

i=2

U(wi)

)
〉
∣∣2 . (5.8)

Note that Im τ is the area of the torus of modulus τ . If we were dealing with the bosonic

string, a zero-mode of c ghost can be split off from the unintegrated vertex, V = cU ,

and (5.2) is essentially derived. However, in the pure spinor formalism, there is no c ghost

so we wish to use the b ghost present in (5.8) to convert V to U = b−1V . Therefore we

rewrite
∮

A
dzb(z) = −

∮

C
dz′

∮

A
dzb(z′)Jg(z) (5.9)

where C is a contour that surrounds z. Then, pulling the contour C off z, we get

A =

∫
d2τ

Im τ

∫ ( n∏

i=1

d2wi

)∣∣〈N0N
′
0

∮

A
dzJg(z)

n∏

i=1

U(wi)〉
∣∣2 (5.10)
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where we have used that b has no poles with U . This is our prescription for the n-point

1-loop amplitudes that treats all external vertices equally.

Note that (5.10) is valid only for the vertices in a special class of gauges, because

not all BRST trivial operators decouple anymore. This explains why the minimal gauge

vertices cannot be used in (5.10). However, (5.10) still has a residual gauge invariance since

operators of the form Q(b0Ω) decouple.

The derivation here of course applies to the bosonic string as well. There, since b and

c in Jg contribute only the zero-modes, the integration of Jg(z) over A can be undone,
∮

A
dzJg(z) = −bc(y) , (y: arbitrary point) (5.11)

and hence,

A =

∫
d2τ

Im τ

∫ ( n∏

i=1

d2wi

)∣∣〈Jg(y)

n∏

i=1

U(wi)〉
∣∣2 (5.12)

as is well known [31]. However, we note again that integrated vertices in this formula are

no longer allowed to be in an arbitrary gauge; they must be related to the conventional

representatives (e.g. U = eik·x for the tachyon) by a gauge transformation of the type

δU = Q(b0Ω).

5.3 Residual BRST invariance of the new prescription

In the derivation of this prescription, it was important that the integrated vertex U was

annihilated by b−1. Therefore, it seems that one is no longer free to choose an arbitrary

gauge for vertices by adding BRST trivial pieces. However, it will now be argued that, up

to a possible contribution from the boundary of the moduli space, U still has a residual

gauge invariance of the form

δU = Q(b0Ω) (5.13)

where Ω is an arbitrary weight 1 primary operator.

To show that operators of the form Q(b0Ω) decouple from the amplitude, consider a

variation of an (n+ 1)-point amplitude:

δA = 〈

∮

A
Jg U1 · · ·UnQ(b0Ω)〉 . (5.14)

Here Ui ≡ Ui(wi) and we omitted the integrations over wi’s. Since the Ui’s are Q-closed

under the integration symbol, we treat them as if they are Q-closed.

Now, pulling the contour of Q and b0 off of Ω and using that Q(Ui) = b0(Ui) = 0,

we find

δA = −〈

∮

A
JB U1 · · ·Un b0Ω〉 (5.15)

= 〈

∮

A
b0(JB)U1 · · ·Un Ω〉 (5.16)

= 〈

∮

A
L0 U1 · · ·Un Ω〉 (5.17)
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where JB denotes the BRST current. Note that on a torus, b0(X) can be written as [
∮
A b,X]

so that b0(X1X2) = b0(X1)X2 ±X1 b0(X2). Since all vertex operators are primary fields,

insertion of
∮
A L0 generates a total derivative on the moduli space. so Q(b0Ω) indeed

decouples from the amplitude.

5.4 4-point 1-loop massless amplitude

It will now be shown that if one uses the integrated vertex operator U in Siegel gauge. the

new prescription of section 5.2 gives a non-vanishing result for the 4-point 1-loop massless

amplitude. Below, we only write the chiral half of the closed string and use the terminology

appropriate for the open string.

We first show that the only non-vanishing contribution comes from the four product

of the dαr
3 and Nmnr

4 terms

dα
r3D2Aαβ

(λλ)3
+Nmn

r4D2Aαβ

(λλ)4
(5.18)

in U . Note that these get smeared to

dα
(r + g)3D2Aαβ(x, θ + g)

|λ+ f |6
+Nmn

(r + g)4D2Aαβ(x, θ + g)

|λ+ f |8
(5.19)

in the presence of the extra regulator N ′(y) of section 3. The regularization of (λλ)−L pole

at the same time shifts rL to (r + g)L, so combinations with L > 11 can give non-zero

contribution.

To show that these are the only contributions to the amplitude, first recall that, for

each of the products in (
∫
U)4, only one of the two regularization factors N0 and N ′

0 is

necessary. The former is needed when the total order of (λλ) poles (or equivalently, the

total r-degree) is below (λλ)−11, and the latter is needed when it exceeds (λλ)−11.6

Since the regulator

N0 = exp[−(λλ+ rθ)− (NN + (λλ)sd)] (5.20)

can only provide at most 11 dα zero modes, and 4 U ’s can provide at most 4 dα zero modes,

it is clear that combinations of the terms for which the total order of (λλ) pole L is below

11 cannot contribute. Therefore, we can forget about the terms requiring N0 regularization

(and N0 itself).

For combinations of the terms requiring the N ′ regularization, one has to saturate

the fermionic zero modes of (dα, θ
α), (sα, r

α) and (gα, gα) to have a non-vanishing result.

Unlike the N regulator of (5.20), the zero mode remnant of the N ′ regulator

N ′
0 = exp[−(ωω + sd) + (fω + gd) + (fω + gs)] (5.21)

6 For the eleventh pole r11/(λλ)11 see the discussion at the end of section 3.2. However, since this

r11 term cannot saturate the fermionic zero modes for the 4-point 1-loop amplitudes, one may ignore this

subtlety here.
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can provide more than 11 dα zero modes because the zero modes of dα appear both in

exp(−sd) and exp(gd). We will find that N ′
0 can provide L dα zero modes for the combi-

nation of terms that goes as rL/(λλ)L in the absence of N ′ regularization.

We first show that the r12 term in (dαf
α)4 can saturate all the zero-modes. In the

gauge (λγm)αAαβ = 0, fα contains terms up to r3/(λλ)3, so (dαf
α)4 contains terms up to

r12/(λλ)12. However, as explained just above, terms with total r-degree below 11 cannot

saturate dα zero modes, so we only need to keep r11/(λλ)11 and r12/(λλ)12.

The coefficients of (λλ)−L (L = 11 or 12) in these combinations are

e−(ωω+sd)e(fω+gd)+(fω+gs) × (d)4(r + g)LD20−LA4
αβ(x, θ + g) (5.22)

where the exponential factors come from the regulator N ′
0, and the rest come from the

smeared vertices (5.19). Now, to saturate all the zero modes of rα, sα and gα, one has to

take the following combination in (5.22):

e−ωωe(fω+gd)+fω(sd)L−11(gs)22−L × (d)4(r11gL−11)D20−LA4
αβ(x, θ + g)

= e−ωωe(fω+gd)+fωdL−7(sr)11g11D20−LA4
αβ(x, θ + g) .

(5.23)

Then, it is clear that L has to be 12 in order to saturate the 16 dα zero modes and 11 gα

zero modes as in

e−ωωefω+fω(gd)11dL−7(sr)11g11D20−LA4
αβ(x, θ + g)

= e−ωωefω+fωdL+4(sr)11(gg)11D20−LA4
αβ(x, θ) .

(5.24)

Thus, in (dαf
α)4, only

(
dα
r3D2Aαβ

(λλ)3

)4

(5.25)

contributes to the amplitude.

This counting of the zero modes at the same time explains that the N ′
0 regulator can

provide L dα zero modes for the term that naively goes like rL/(λλ)L. Then, it is clear

that only

(
dα
r3D2Aαβ

(λλ)3
+Nmn

r4D2Aαβ

(λλ)4

)4

(5.26)

contributes to the 4-point amplitude in the (λγm)αAαβ = 0 gauge. (Other combinations

cannot saturate the 16 dα zero modes, because they are of the form dkrL−k/(λλ)L−k with

L < 16 and k = 1, · · · , 4.)

Let us make a consistency check for the amplitudes computed using the prescription

given here. The 4 point amplitude should have the dimension

A ∼ F 4 , (5.27)
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where F = Fmn is the photon field strengths. In the superfield Aαβ(x, θ), the fieldstrength

resides at the θ6 level so using Aαβ , the amplitude should be

A ∼ D24A4
αβ ∼

∫
d16θD8A4

αβ , (5.28)

and this is what we get by integrating (5.24) over all zero modes (for L = 12).

We now show that the amplitude computed as above is indeed BRST invariant. To

show that one is computing a BRST invariant quantity, one has to check that the result is

invariant under the BRST variation of the regulator,

N ′(y) = exp[Q(sαωα + gαωα + gαω
α)]

→ N ′
c,ε,ε(y) = exp[Q(csαωα + εgαωα + εgαω

α))

= exp[−c(ωαω
α + sαdα] + ε(fαωα + gαdα) + ε(fαω

α + gαs
α)] ,

(5.29)

for some constants c, ε, and ε.

To check the invariance of (5.25) under this variation of the regulator, one first notes

that the zero mode products in (5.23) with L = 12 scale as

e−c(ωω+sd)eε(fω+gd)+ε(fω+gs) × (d)4(r + εg)12D12A4
αβ(x, θ + εg)

= e−c(ωω)eε(fω)+ε(fω)(csd)1(εgd)11(εgs)10 × (d)4(ε1r11g1)D12A4
αβ(x, θ)

= c1(εε)11e−c(ωω)eε(fω)+ε(fω)(gg)11d16(sr)11D12A4
αβ(x, θ) .

(5.30)

So to show the BRST invariance, one needs to check that the bosonic integrations provide

c−1(εε)−11:

∫
d22ωd22λd22f e−c(ωω)+ε(fω)+ε(fω)

4∏

i=1

1

|λ+ εfi|6
∼ c−1(εε)−11 . (5.31)

This scaling can be easily shown by performing the change of variables

(ω, λ, f) → (ω′, λ′, f ′) = (c1/2ω, c−1/2λ, εc−1/2f) (5.32)

so that the integral becomes

c−1(εε)−11 ×

∫
d22ω′d22λ′d22f ′ e−(ω′ω′)+(f ′ω′)+(f

′

ω)′
4∏

i=1

1

|λ′ + f ′i |
6
. (5.33)

Similarly, all contributions from (5.26) can be checked to be invariant under the BRST

variation of the N ′ regulator.

To summarize, we have shown that the 4-point 1-loop amplitude can be computed

using 4 integrated vertex operators U in the Siegel gauge. To be able to do so, it was

important that the U ’s are conformal primaries of weight 1 and are annihilated by b−1.

This explains why one could not compute the amplitude using 4 integrated vertex operators

in the minimal gauge.
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Since the order of (λλ) poles in (
∫
U)4 exceeds 11, a regularization for (λλ) → 0 was

necessary. We used a regularization method proposed in [4] (and explained in section 3)

to define the indefinite factor of the form
∫

d22λd11 rL

(λλ)L
, (L > 11) . (5.34)

Moreover, since the Siegel gauge integrated vertex operator takes a relatively simple form

in (λγm)αAαβ = 0 gauge, we were able to identify the combinations of the terms that

contributes to the amplitude and their invariance under the BRST variation of the regulator

N ′. Our conclusion is that the only contribution comes from the terms (5.26) that require

N ′ regularization for (λλ) → 0.

Finally, let us mention that we have demonstrated (ignoring the gauge invariance

δωα = (γmλ)αΩm) that the non-zero modes of sα in the regulator N ′ does convert “extra”

rα zero modes above 11 to dα zero modes as was advocated in [4].

6 Summary

In this paper, we showed how to construct vertex operators in the pure spinor formalism

in the Siegel gauge. Unintegrated vertices in the Siegel gauge can be constructed as VS =

b0V
∗, where V ∗ is the ghost number 2 vertex of the corresponding antifield. Integrated

vertices can then be constructed as usual by
∫
US =

∫
b−1VS .

The construction is not obstructed by the complexity of the b-ghost of the formalism

and works for vertices of all mass levels, provided that the space of pure spinor vertices has

field-antifield doubling. Although this latter fact is non-trivial in the pure spinor formalism,

it is strongly supported by the study of the partition function of the pure spinor operator

space in [21–23].

For the massless states, an explicit form of the antifield vertex operator is V ∗ =

λαλβAαβ(x, θ), and the computation of the Siegel gauge vertices (both unintegrated and

integrated) is straightforward. Although the form of the integrated vertex operator US is

fairly complicated, we showed that in the gauge where Aαβ satisfies (λγm)αAαβ = 0, the

form of US simplifies considerably and contains terms only up to r4/(λλ)4.

When vertices are in the Siegel gauge, it is well-known in bosonic string theory that

the n-point 1-loop amplitude can be computed using n integrated vertex operators. We

have shown that this Siegel gauge prescription is also valid in the pure spinor formalism

by deriving it from the conventional prescription that uses 1 unintegrated and (n − 1)

integrated vertex operators.

This new 1-loop prescription provides a good testing ground for the regularization pre-

scription of [4] (reviewed in section 3) for the functional integration region (λλ) ∼ 0. This

regularization becomes necessary when the factor of r/(λλ) in the integrand accumulates

to r11/(λλ)11 or higher. Since the Siegel gauge vertex operators have poles in (λλ), the 4-

point 1-loop amplitude already requires this regularization of (λλ) ∼ 0. Although we have

not worked out the explicit index contractions, we identified the combinations of terms in

4 US ’s (in the (λγm)αAαβ = 0 gauge) that can contribute to the amplitude, and argued

that they give a well defined quantity.
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Note that if one blindly applies the new 1-loop prescription to the “minimal gauge”

vertices that do not depend on non-minimal variables, one would get a vanishing 4-point

amplitude because of an undersaturation of dα zero modes. For the Siegel gauge vertices,

we observed that the regularization of (λλ) ∼ 0 converts the extra factors of rα’s to dα

zero modes, and the correct saturation of all fermionic zero modes is realized.

There are several possible continuations of the present work. Firstly, it should be

possible to complete the computation of the 4-point 1-loop amplitude using the new pre-

scription by working out the index contractions explicitly. Although the regularization

prescription of [4] becomes more complicated when one makes it consistent with the pure

spinor constraint, the number of terms that contributes to the amplitude should not change

and is fairly small.

Secondly, since we now have a method to construct Siegel gauge vertex operators sys-

tematically, it might be possible to obtain a gauge fixed action of the cubic open superstring

field theory proposed in [6].
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